Evaluation of the Additives’ Behaviour to Determine the Best Modifier for Improving Asphalt Performance at High Temperature
Author(s) -
Ismail Bakheit Eldouma,
Xiaoming Huang
Publication year - 2021
Publication title -
advances in civil engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.379
H-Index - 25
eISSN - 1687-8094
pISSN - 1687-8086
DOI - 10.1155/2021/8879415
Subject(s) - materials science , dynamic shear rheometer , asphalt , rheology , ethylene vinyl acetate , rut , composite material , compatibility (geochemistry) , styrene butadiene , cracking , styrene , polystyrene , copolymer , polymer
The current study aims to examine the physical and rheological properties at the high-temperature range of 52, 58, 64, 70, 76, and 82°C, utilizing adjusted asphalt binders. Three kinds of asphalt modifiers were selected such as styrene-butadiene-styrene, ethylene vinyl acetate, and end of life tires. The selected additives were implemented with different contents ranging from 4% to 7% by the weight of neat asphalt. Various test methods have been established, such as ductility, viscosity, microscopic inspection, and dynamic shear rheometer experiments. Results proved that the percentage decrease in ductility was 93%, 91%, and 88% with regard to the adding of the end of life tires (ELTs), ethylene vinyl acetate (EVA), and styrene-butadiene-styrene (SBS) additives, respectively. Outcomes also confirmed that viscosity was boosted from 0.411 Pa.s to 1.249, 1.0986, and 0.9785 Pa.s after adding 7% of ELTs, 7% of EVA, and 7% of SBS, respectively. The rutting parameter and complex shear modulus increased after modification, indicating the excellent performance of asphalt. The conclusions confirmed that the ELTs have fewer agglomerates and have good compatibility before ageing and excellent compatibility after the ageing process. Thus, the ELTs are deemed as efficient dispersion additive for avoiding separation during the storage and handling of the asphalt binder. Lastly, ELTs were accepted as the best enhancer for their positive influence on physical and rheological characteristics, which means higher quality amended bitumen would give higher resistance to permanent deformation.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom