Modified Whale Optimization Algorithm for Solar Cell and PV Module Parameter Identification
Author(s) -
Xiaojia Ye,
Wei Liu,
Hong Li,
Mingjing Wang,
Chi Chen,
Guoxi Liang,
Huiling Chen,
Hailong Huang
Publication year - 2021
Publication title -
complexity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.447
H-Index - 61
eISSN - 1099-0526
pISSN - 1076-2787
DOI - 10.1155/2021/8878686
Subject(s) - computer science , identification (biology) , convergence (economics) , solar irradiance , algorithm , swarm behaviour , mathematical optimization , local search (optimization) , stability (learning theory) , mathematics , artificial intelligence , physics , machine learning , meteorology , botany , economics , biology , economic growth
The whale optimization algorithm (WOA) is a powerful swarm intelligence method which has been widely used in various fields such as parameter identification of solar cells and PV modules. In order to better balance the exploration and exploitation of WOA, we propose a novel modified WOA (MWOA) in which both the mutation strategy based on Levy flight and a local search mechanism of pattern search are introduced. On the one hand, Levy flight can make the algorithm get rid of the local optimum and avoid stagnation; thus, it is able to prevent the algorithm from losing diversity and to increase the global search capability. On the other hand, pattern search, a direct search method, has not only high convergence rate but also good stability, which can boost the local optimization ability of the WOA. Therefore, the combination of these two mechanisms can greatly improve the capability of WOA to obtain the best solution. In addition, MWOA may be employed to estimate parameters in single diode model (SDM), double diode model (DDM), and PV modules and to identify unknown parameters of two different types of PV modules under diverse light irradiance and temperature conditions. The analytical results demonstrate the validity and the practicality of MWOA for estimating parameters of solar cells and PV modules.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom