z-logo
open-access-imgOpen Access
Dynamic Path Flow Estimation Using Automatic Vehicle Identification and Probe Vehicle Trajectory Data: A 3D Convolutional Neural Network Model
Author(s) -
Can Chen,
Yumin Cao,
Keshuang Tang,
Keping Li
Publication year - 2021
Publication title -
journal of advanced transportation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.577
H-Index - 46
eISSN - 2042-3195
pISSN - 0197-6729
DOI - 10.1155/2021/8877138
Subject(s) - computer science , convolutional neural network , path (computing) , artificial intelligence , trajectory , identification (biology) , sensor fusion , feature (linguistics) , pattern recognition (psychology) , computer vision , data mining , linguistics , philosophy , physics , botany , astronomy , biology , programming language
Dynamic path flows, referring to the number of vehicles that choose each path in a network over time, are generally estimated with the partial observations as the input. The automatic vehicle identification (AVI) system and probe vehicle trajectories are now popular and can provide rich and complementary trip information, but the data fusion was rarely explored. Therefore, in this paper, the dynamic path flow estimation is based on these two data sources and transformed into a feature learning problem. To fuse the two data sources belonging to different detection ways at the data level, the virtual AVI points, analogous to the real AVI points (turning movements at nodes with AVI detectors), are defined and selected to statically observe the dynamic movement of the probe vehicles. The corresponding selection principles and a programming model considering the distribution of real AVI points are first established. The selected virtual AVI points are used to construct the input tensor, and the turning movement-based observations from both the data sources can be extracted and fused. Then, a three-dimensional (3D) convolutional neural network (CNN) model is designed to exploit the hidden patterns from the tensor and establish the high-dimensional correlations with path flows. As the path flow labels commonly with noises, the bootstrapping method is adopted for model training and the corresponding relabeling principle is defined to purify the noisy labels. The entire model is extensively tested based on a realistic road network, and the results show that the designed CNN model with the presented data fusion method can perform well in training time and estimation accuracy. The robustness of a model to noisy labels is also improved through the bootstrapping method. The dynamic path flows estimated by the trained model can be applied to travel information provision, proactive route guidance, and signal control with high real-time requirements.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom