A Collaborative Reservation Mechanism of Multiple Parking Lots Based on Dynamic Vehicle Path Planning
Author(s) -
Yuting Xiao,
Zhen Cai,
Jinglei Li,
Mangui Liang,
Xiaoyu Long
Publication year - 2021
Publication title -
journal of advanced transportation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.577
H-Index - 46
eISSN - 2042-3195
pISSN - 0197-6729
DOI - 10.1155/2021/8876069
Subject(s) - reservation , transport engineering , computer science , acknowledgement , parking guidance and information , operations research , path (computing) , computer network , engineering
With the development of wireless communication and artificial intelligence technology, online parking reservation system can effectively save drivers’ searching time for vacant spaces. However, in the environment with multiple candidate parking lots around the destination, how to coordinate and maximize parking space resources to reduce the travel time is still a practical issue for urban drivers. In order to solve this problem, a collaborative reservation mechanism based on dynamic vehicle path planning is proposed in this paper. By the aid of the dedicated backbone network with a clear division of work responsibilities, the information of traffic and parking lots is collected in real time, based on which the travel time prediction and empty spaces evaluation are executed separately, and then the optimal decision of path planning and parking lot selection can be made and adjusted dynamically by a step-by-step acknowledgement mechanism. The simulation results show that, based on collaborative working and overall planning, our proposed reservation mechanism can effectively raise the utilization rate of the parking lots resources and significantly reduce the travel time for drivers under different traffic environments. Compared to current mechanisms, the collaborative parking reservation mechanism reveals higher feasibility and applicability. It can assist in design and operation of urban traffic management and space resource utilization.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom