Determination of the Immunoglobulin G Spectrum by Surface-Enhanced Raman Spectroscopy Using Quasispherical Gold Nanoparticles
Author(s) -
Alejandra Ortiz-Dosal,
Elizabeth Loredo-García,
Ana Gabriela Álvarez-Contreras,
Juan Manuel Núñez-Leyva,
Luis Carlos Ortiz-Dosal,
Eleazar Samuel KolosovasMachuca
Publication year - 2021
Publication title -
journal of nanomaterials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.463
H-Index - 66
eISSN - 1687-4129
pISSN - 1687-4110
DOI - 10.1155/2021/8874193
Subject(s) - raman spectroscopy , colloidal gold , surface enhanced raman spectroscopy , materials science , substrate (aquarium) , nanoparticle , antibody , immunoglobulin g , analytical chemistry (journal) , nanotechnology , chromatography , chemistry , raman scattering , medicine , immunology , optics , biology , ecology , physics
Background. Immunoglobulins (Ig) are glycoprotein molecules produced by plasma cells in response to antigenic stimuli involved in various physiological and pathological conditions. Intravenous immunoglobulin (IVIG) is a compound whose composition corresponds to Ig concentrations in human plasma, predominantly IgG. It is used as a replacement treatment in immunodeficiencies and as an immunomodulator in inflammatory and autoimmune diseases. The determination of IgG concentrations is useful in the diagnosis of these immunodeficiencies. Surface-enhanced Raman spectroscopy (SERS) is a technique that allows protein quantification in a fast and straightforward way. Objective. This study is aimed at determining the Raman spectrum of IgG at physiological concentrations using quasispherical gold nanoparticles as a SERS substrate. Methods. We initially determined the Raman spectrum of IVIG at 5%. Subsequently, for SERS’ characterization, decreasing dilutions of the protein were made by adding deionized water and an equal volume of the 5 nm gold quasispherical nanoparticle colloid. For each protein concentration, the Raman spectrum was determined using a 10x objective; we focused the 532 and 785 nm laser on the sample surface, in a range of 500-1800 cm-1, with five acquisitions and an acquisition time of 30 seconds. Results. We obtained the IVIG spectrum using SERS up to a concentration of 75 mg/dl. The Raman bands correspond to aromatic amino acid side chains and the characteristic beta-sheet structure of IgG. Conclusion. The use of 5 nm quasispherical gold nanoparticles as a SERS substrate allows for detecting the Raman spectrum of IVIG at physiological concentrations.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom