Synthesis, Characterization, and Photocatalytic Activity of g-C3N4/GaN-ZnO Composite
Author(s) -
Nguyen Ha Trang,
Tran Thi Viet Ha,
Nguyen Minh Viet,
Nguyen Minh Phuong
Publication year - 2021
Publication title -
journal of nanomaterials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.463
H-Index - 66
eISSN - 1687-4129
pISSN - 1687-4110
DOI - 10.1155/2021/8871067
Subject(s) - photocatalysis , materials science , visible spectrum , composite number , charge carrier , chemical engineering , nanotechnology , optoelectronics , composite material , catalysis , organic chemistry , chemistry , engineering
Recently, photocatalysis process has shown great potential as a low-cost, environmentally friendly, and sustainable method for the water/wastewater treatment. Among that, g-C3N4 is one of the most promising photocatalyst and widely used for a variety of applications. In spite of some unique features such as strong reduction ability, active under visible light, nontoxic, and high stability, g-C3N4 photocatalytic capability under visible light is limited due to fast recombination rate of reactive charges. To deal with this issue, in this study, g-C3N4 is combined with GaN-ZnO for reducing the recombination rate of charge carriers and increasing the active sites. The g-C3N4/GaN-ZnO composite was characterized by several methods such as SEM, EDX, XRD, FT-IR, UV-Vis, and BET. It is also observed that the composite with outstanding features can work effectively under visible light; thus, it is likely to be widely applied in environment treatment, especially in antibiotic residue with more than 90% of tetracycline was decomposed after 3 hours.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom