z-logo
open-access-imgOpen Access
Location-Price Game in a Dual-Circle Market with Different Demand Levels
Author(s) -
Xiaofeng Chen,
Qiankun Song,
Luqing Rong,
Zhenjiang Zhao
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/8870747
Subject(s) - dual (grammatical number) , position (finance) , algebraic expression , mathematical economics , bertrand competition , supply and demand , economics , competition (biology) , mathematics , algebraic number , mathematical optimization , microeconomics , oligopoly , art , mathematical analysis , ecology , literature , finance , cournot competition , biology
This paper researches a location-price game in a dual-circle market system, where two circular markets are interconnected with different demand levels. Based on the Bertrand and Salop models, a double intersecting circle model is established for a dual-circle market system in which two players (firms) develop a spatial game under price competition. By a two-stage (location-then-price) structure and backward induction approach, the existence of price and location equilibrium outcomes is obtained for the location game. Furthermore, by Ferrari method for quartic equation, the location equilibrium is presented by algebraic expression, which directly reflects the relationship between the equilibrium position and the proportion factor of demand levels. Finally, an algorithm is designed to simulate the game process of two players in the dual-circle market and simulation results show that two players almost reach the equilibrium positions obtained by theory, wherever their initial positions are.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom