z-logo
open-access-imgOpen Access
Development of a Multifunctional Radiation Measurement System for the Rapid Radiological Characterization of a Decommissioned Nuclear Facility Site
Author(s) -
Han Young Joo,
JaeWook Kim,
Young Seo Kim,
So Yun Jeong,
Bongsoo Lee,
Joo Hyun Moon
Publication year - 2021
Publication title -
journal of sensors
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.399
H-Index - 43
eISSN - 1687-7268
pISSN - 1687-725X
DOI - 10.1155/2021/8870609
Subject(s) - radiation , radiation monitoring , scintillator , environmental science , radiological weapon , particle detector , remote sensing , physics , detector , nuclear medicine , optics , nuclear physics , radiochemistry , geology , chemistry , medicine
In this study, a radiation measurement system with multifunctions for the rapid radiological characterization of a decommissioned nuclear facility site was developed and evaluated. The system remotely and simultaneously measures the beta and gamma radiation from the soil at a decommissioned nuclear facility site and wirelessly transmits the measurement data to the main server, which collects and analyzes the data. The radiation-measuring part of the system is composed of a sensing probe, multichannel analyzer (MCA), and laptop computer. The sensing probe is a phoswich radiation sensor (PHORS) consisting of two inorganic scintillators (NaI(Tl) and CaF2(Eu)), each of which simultaneously measures the count rates and energies of the beta and gamma radiation. To test the performance of the PHORS, the beta and gamma radiation from a radiation source at 0–10 cm depths (at steps of 1 cm) under a soil surface was measured. The measurements show that the radiation count rates agree well with the theoretically predicted ones; the PHORS is as good as commercial radiation detectors in providing the energy spectrum of a radionuclide. In addition, a chi-square test was conducted, and the energy resolution was evaluated. The communication part of the system consisting of a global positioning system (GPS) and long-term evolution telecommunication (LTE) modem can successfully transmit the measurement data and their location information.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom