z-logo
open-access-imgOpen Access
Drying Kinetics and Quality of Whole, Halved, and Pulverized Tiger Nut Tubers (Cyperus esculentus)
Author(s) -
Ernest Ekow Abano,
Joshua Akanson,
Nazir KizzieHayford
Publication year - 2021
Publication title -
international journal of food science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.479
H-Index - 18
eISSN - 2356-7015
pISSN - 2314-5765
DOI - 10.1155/2021/8870001
Subject(s) - nut , browning , chemistry , tiger , food science , cyperus , moisture , horticulture , botany , zoology , biology , mathematics , structural engineering , algorithm , engineering , organic chemistry
The objective of this study was to provide the optimum drying conditions to produce high-quality dried tiger nuts using hot-air drying. For this, we evaluated the effect of the whole, halved, and pulverized tiger nuts and air temperature (50 to 70°C) on the drying kinetics and quality of tiger nuts. The drying process generally followed a constant rate in the first 3 hours and a falling regime. We found the optimum drying conditions for tiger nuts to be crushed before convective hot-air drying at a temperature of 70°C. At this optimum condition, the predicted drying time, vitamin C content, reducing sugars, browning, brightness, redness, and yellowness was 780 min, 22.9 mg/100 mg dry weight, 157.01 mg/100 g dry weight, 0.21 Abs unit, 56.97, 1.6, and 17.0, respectively. The tiger nut's reducing sugars increased from the 130.8 mg/100 dry weight in the raw tiger nuts to between 133.11 and 158.18 mg/100 dry weight after drying. The vitamin C degradation rate was highest in the uncut tiger nuts (32-35%) while in the halved and the pulverized samples, it was between 12 and 17%. The crushed samples' effective moisture removal increased between 5.6- and 6.75-fold at the different air temperatures than that of the intact tiger nuts. The activation energy was 18.17 kJ/mol for the unbroken, 14.78 kJ/mol for the halved, and 26.61 kJ/mol for the pulverized tiger nut samples. The model MR = 0.997 exp(−0.02 t 1.266 ) + 0.56 t was the most suitable thin-layer drying model among the models examined for convective hot-air drying of tiger nuts. It is advisable to crush tiger nut before hot-air drying to produce better-quality flour for making milk beverages, cakes, biscuits, bread, porridge, and tiger nut-based breakfast cereals.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom