z-logo
open-access-imgOpen Access
An Improved Symbiosis Particle Swarm Optimization for Solving Economic Load Dispatch Problem
Author(s) -
Jianxia Zhang,
Jianxin Zhang,
Feng Zhang,
Minglu Chi,
Linbin Wan
Publication year - 2021
Publication title -
journal of electrical and computer engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.318
H-Index - 25
eISSN - 2090-0155
pISSN - 2090-0147
DOI - 10.1155/2021/8869477
Subject(s) - particle swarm optimization , mathematical optimization , multi swarm optimization , computer science , metaheuristic , optimization problem , electric power , power (physics) , mathematics , physics , quantum mechanics
To realize the sustainable development of social economy, energy conservation and emission reduction has become one of the problems that must be considered in the current power system. Under the electric power market system, the economic load dispatch problem not only is important but also has practical significance and broad application prospects. In order to minimize the costs of electric-power generation, the load capacity should be reasonably assigned among many different generating sets. In this paper, an improved symbiosis particle swarm optimization algorithm was proposed, aiming at providing a better solution to this problem. First of all, a mathematical model was established with certain constraints, which successfully converted the practical problem into a mathematical one. Then, to balance the global optimization and local search capability, an improved symbiosis particle swarm optimization algorithm with mutualistic symbiosis strategy in nature was presented. The improved symbiosis particle swarm optimization algorithm consisted of three swarms inspired by the proverb “two heads are better than one,” and its specific analysis was through the standard test functions. At last, the economic load dispatch problem could be optimized by the proposed improved symbiosis particle swarm optimization algorithm. In addition, two different kinds of practical examples were also adopted for algorithm evaluation. From the simulation results, it can be seen clearly that the costs of electric-power generation gained were the lowest compared with the results of particle swarm optimization algorithm, improved chaos particle swarm optimization algorithm, and symbiotic organisms search algorithm, well demonstrating the effectiveness of the improved symbiosis particle swarm optimization algorithm in solving the economic load dispatch problem.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom