Gas Chromatography-Mass Spectrometry Coupled with Multivariate Statistical Analysis to Identify the Alpha Glucosidase Inhibitors from Flesh of Salacca zalacca Fruits and Their Molecular Docking Studies
Author(s) -
Mohammed S. M. Saleh,
Jamshed Siddiqui,
Nabil Ali AlMekhlafi,
Hussah Abdullah Alshwyeh,
Ahmed Mediani,
Nor Hadiani Ismail,
Yusof Kamisah
Publication year - 2021
Publication title -
evidence-based complementary and alternative medicine
Language(s) - English
Resource type - Journals
eISSN - 1741-4288
pISSN - 1741-427X
DOI - 10.1155/2021/8867773
Subject(s) - chemistry , palmitic acid , ethanol , stearic acid , gas chromatography–mass spectrometry , chromatography , metabolomics , gas chromatography , enzyme , fatty acid , mass spectrometry , biochemistry , organic chemistry
Fruit of salak (Salaaca zalacca) is traditionally used and commercialized as an antidiabetic agent. However, scientific evidence to prove this folk claim is quite lacking. Therefore, this research was aimed to evaluate the α-glucosidase inhibition activity of S. zalacca fruit and identify the bioactive compounds. The fruits were extracted by different ratios of ethanol and water (0, 20, 40, 60, 80, 100%, v/v) to get E0 (100% water), E20 (20% ethanol), E40 (40% ethanol), E60 (60% ethanol), E80 (80% ethanol), and E100 (100% ethanol) extracts. The extracts obtained were subjected to the α-glucosidase inhibitory assay. Gas chromatography-mass spectrometry- (GC-MS-) based metabolomics approach was used in profiling the bioactive metabolites present in the extracts. Orthogonal partial least square (OPLS) was used to correlate GC-MS data and α-glucosidase assay results to identify the possible chemical markers. All active compounds identified were subjected to molecular docking. The extracts from the S. zalacca fruit showed potent inhibition activity against α-glucosidase. The IC50 values from the α-glucosidase inhibitory assay ranged between 16 and 275 µg/ml. Overall, E60 displayed significantly higher α-glucosidase inhibition activity, while E0 showed the lowest α-glucosidase inhibition activity. Major compounds detected in S. zalacca fruits were sugars, fatty acids, and sterols, including myo-inositol, palmitic acid, stearic acid, and β-sitosterol. Moreover, the results obtained from molecular docking indicated that palmitic acid and β-sitosterol were close to the active side of the enzyme. Some of the residues that interacted include HID295, ASN259, LEU313, LYS125, PHE159, VAL216, PHE178, TYR72, TYR158, HIE315, ARG315, and PHE303. The bioassay result strongly suggests that E60 extract from S. zalacca fruits has potential α-glucosidase inhibitory activity. The hydrophobic compounds, including palmitic acid and β-sitosterol, were found to induce the α-glucosidase inhibition activity.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom