Numerical and Experimental Research on the Effect of Platform Heave Motion on Vortex-Induced Vibration of Deep Sea Top-Tensioned Riser
Author(s) -
Jie Zhang,
Ying Zeng,
Yougang Tang,
Wenyun Guo,
Zhenkui Wang
Publication year - 2021
Publication title -
shock and vibration
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.418
H-Index - 45
eISSN - 1875-9203
pISSN - 1070-9622
DOI - 10.1155/2021/8866051
Subject(s) - towing , vibration , structural engineering , engineering , parametric statistics , vortex , marine engineering , amplitude , drilling riser , offshore geotechnical engineering , equations of motion , vortex induced vibration , mechanics , acoustics , geotechnical engineering , physics , mechanical engineering , mathematics , drilling , statistics , quantum mechanics
The prediction and control of vortex-induced vibration (VIV) is one of the key problems for riser design. The effect of platform heave motion on VIV of deep sea top-tensioned riser (TTR) is presented by means of numerical simulation and experiment in this research. First, the heave motion was modeled as a parametric excitation, and the governing equation of VIV of riser considering the parametric excitation was established. Then, the dynamic response of TTR was calculated numerically by the finite difference method based on the Van der Pol wake-oscillator model. Finally, a validation experiment was carried out at the towing tank of Tianjin university. The results show that the VIV response at the bottom of riser is significantly increased due to the platform heave motion, especially in the situation of low current velocity. The larger amplitude and the higher frequency of the platform heave motion with the greater influence are generated on VIV of TTR. In particular, the value of 0.5 times, 1 time, or other multiples of the platform heave frequency will be included in the vibration frequency component of TTR when the platform heave amplitude is large and the frequency is high.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom