Dynamic Analysis and Robust Control of a Chaotic System with Hidden Attractor
Author(s) -
Huaigu Tian,
Zhen Wang,
Peijun Zhang,
Mingshu Chen,
Yang Wang
Publication year - 2021
Publication title -
complexity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.447
H-Index - 61
eISSN - 1099-0526
pISSN - 1076-2787
DOI - 10.1155/2021/8865522
Subject(s) - attractor , chaotic , computer science , chaotic systems , control theory (sociology) , control (management) , statistical physics , mathematics , artificial intelligence , physics , mathematical analysis
In this paper, a 3D jerk chaotic system with hidden attractor was explored, and the dissipativity, equilibrium, and stability of this system were investigated. The attractor types, Lyapunov exponents, and Poincare section of the system under different parameters were analyzed. Additionally, a circuit was carried out, and a good similarity between the circuit experimental results and the theoretical analysis testifies the feasibility and practicality of the original system. Furthermore, a robust feedback controller was designed based on the finite-time stability theory, which guarantees the synchronization of 3D jerk master-slave system in finite time and asymptotically converges to the origin. Finally, we also give verification for the discussion in this paper by numerical simulation.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom