18F-FDG-PET/CT Whole-Body Imaging Lung Tumor Diagnostic Model: An Ensemble E-ResNet-NRC with Divided Sample Space
Author(s) -
Tao Zhou,
Bingqiang Huo,
Huiling Lu,
Hongbin Shi,
Pengfei Yang,
Hongsheng Ding
Publication year - 2021
Publication title -
biomed research international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.772
H-Index - 126
eISSN - 2314-6141
pISSN - 2314-6133
DOI - 10.1155/2021/8865237
Subject(s) - artificial intelligence , pattern recognition (psychology) , classifier (uml) , convolutional neural network , computer science , residual neural network , feature vector , softmax function
Under the background of 18 F-FDG-PET/CT multimodal whole-body imaging for lung tumor diagnosis, for the problems of network degradation and high dimension features during convolutional neural network (CNN) training, beginning with the perspective of dividing sample space, an E-ResNet-NRC (ensemble ResNet nonnegative representation classifier) model is proposed in this paper. The model includes the following steps: (1) Parameters of a pretrained ResNet model are initialized using transfer learning. (2) Samples are divided into three different sample spaces (CT, PET, and PET/CT) based on the differences in multimodal medical images PET/CT, and ROI of the lesion was extracted. (3) The ResNet neural network was used to extract ROI features and obtain feature vectors. (4) Individual classifier ResNet-NRC was constructed with nonnegative representation NRC at a fully connected layer. (5) Ensemble classifier E-ResNet-NRC was constructed using the “relative majority voting method.” Finally, two network models, AlexNet and ResNet-50, and three classification algorithms, nearest neighbor classification algorithm (NNC), softmax, and nonnegative representation classification algorithm (NRC), were combined to compare with the E-ResNet-NRC model in this paper. The experimental results show that the overall classification performance of the Ensemble E-ResNet-NRC model is better than the individual ResNet-NRC, and specificity and sensitivity are more higher; the E-ResNet-NRC has better robustness and generalization ability.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom