Study on the Water-Physical Properties of the Cement-Plaster Bonded Rock-Like Materials
Author(s) -
Yong Zhang,
Zhiguo Cao,
Xiaomeng Shi
Publication year - 2021
Publication title -
advances in civil engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.379
H-Index - 25
eISSN - 1687-8094
pISSN - 1687-8086
DOI - 10.1155/2021/8863064
Subject(s) - cement , softening , permeability (electromagnetism) , materials science , material properties , absorption of water , geotechnical engineering , composite material , water–cement ratio , geology , chemistry , biochemistry , membrane
The cement-plaster bonded rock-like material is one of the most commonly used materials to simulate different rocks in physical model tests. However, the applicability of this material in solid-fluid coupling model tests is not clear because there are few research studies on the water-physical properties of this material and its similarity to the actual rock is uncertain. This paper presents a systemic experimental study on the water-physical properties of the cement-plaster bonded rock-like materials. The parameters of rock-like materials, including water absorption, softening coefficient, and permeability coefficient, were compared with those of actual rocks to analyse the applicability of such material. Then, the influence of proportion on the water-physical properties of this material was discussed. By multiple regression analysis of the test results, empirical equations between the water-physical parameters and proportions were proposed. The equations can be used to estimate the water-physical properties of cement-plaster bonded rock-like materials with specific proportion and thus to select suitable materials in the solid-fluid coupling physical model tests.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom