Deep Camera-Aware Metric Learning for Person Reidentification
Author(s) -
Wei Liu,
Ping Liang,
Lei Liu,
Zhiqiang Hao,
Xin Xu
Publication year - 2021
Publication title -
wireless communications and mobile computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.42
H-Index - 64
eISSN - 1530-8677
pISSN - 1530-8669
DOI - 10.1155/2021/8859088
Subject(s) - computer science , metric (unit) , artificial intelligence , marketing , business
Person reidentification (re-id) suffers from a challenging issue due to the significant inconsistency of the camera network, including position, view, and brands. In this paper, we propose a deep camera-aware metric learning (DCAML) model, where images on the identity-level spaces are further projected into different camera-level subspaces, which can explore the inherent relationship between identity and camera. Furthermore, we exploit dynamic training strategy to jointly multiple metrics for identity-camera relationship learning and thus consumedly elevating the retrieval accuracy. Extensive experiments on the three public datasets demonstrated that our method performs competitive results compared to the state-of-the-art person re-id methods.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom