z-logo
open-access-imgOpen Access
Cortisol Secretion and Subsequent Impaired Lymphopoiesis after Starvation Can Be Reduced by Moxibustion Treatment
Author(s) -
Kyung Ho Hwang,
Kiyoung Jang,
SangYun Nam,
Yong Ju Kim
Publication year - 2021
Publication title -
evidence-based complementary and alternative medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.552
H-Index - 90
eISSN - 1741-4288
pISSN - 1741-427X
DOI - 10.1155/2021/8856687
Subject(s) - endocrinology , medicine , hormone , secretion , moxibustion , corticosterone , lymphopoiesis , biology , progenitor cell , pathology , microbiology and biotechnology , stem cell , alternative medicine , acupuncture
As a known steroid hormone, cortisol is involved in gluconeogenesis. Uninterrupted cortisol secretion has fatal effects, both physically and psychologically, because cortisol counteracts the immune response. Moxibustion (Mox) treatment is a traditional technique used in East Asia, which therapeutically transfers heat to certain points on the body surface. In the present study, the effect of Mox treatment on stress hormone secretion was investigated using a mouse model of starvation, in which Mox was applied on the Zhongwan acupoint (CV12). First, high cortisol levels induced by starvation were dose-dependently reduced by Mox treatment. In addition, the stress-induced decline in lymphoid progenitor cell production accompanied by altered cellularity in the thymus, bone marrow, and spleen was also significantly recovered by Mox treatment. Taken together, these findings indicated that Mox treatment reduces stress hormone secretion, which may rescue stress-induced lymphopoiesis impairment. These observations also suggested that enhanced resistance to stress may be one of the mechanisms underlying the immunomodulatory effects of Mox treatment.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom