A Moving Path Tracking Method of the Thunderstorm Cloud Based on the Three-Dimensional Atmospheric Electric Field Apparatus
Author(s) -
Yang Xu,
Hongyan Xing,
Wei Xu,
Xinyuan Ji
Publication year - 2021
Publication title -
journal of sensors
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.399
H-Index - 43
eISSN - 1687-7268
pISSN - 1687-725X
DOI - 10.1155/2021/8856033
Subject(s) - thunderstorm , electric field , path (computing) , tracking (education) , meteorology , cloud computing , field (mathematics) , computer science , environmental science , aerospace engineering , physics , engineering , mathematics , psychology , pedagogy , quantum mechanics , operating system , pure mathematics , programming language
In order to obtain the position of thunderstorm cloud in real time and make it possible to track the thunderstorm cloud motion, a method is proposed for tracking the moving path of thunderstorm cloud, with the aid of the three-dimensional atmospheric electric field apparatus (AEFA). According to the method of images, we establish a spatial model for tracking the moving path. Based on the model, we define the dynamic parameters of thunderstorm cloud position. Subsequently, to realize the moving path tracking of thunderstorm cloud, its coordinates are associated with the time points. Besides, we use the relationship between electric field component measurement error, horizontal angle, elevation angle, and the tracking accuracy to analyze the tracking performance. Finally, a fusion system combining an electric field measurement unit, electric field calibration unit, and permittivity measurement unit is designed to meet the actual needs. The results show that the method can accurately track the thunderstorm cloud moving path and has a better effect. In addition, the method can also be combined with a radar map, thus better predicting the development of the thunderstorm cloud.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom