Determination and Pharmacokinetics of Omeprazole Enantiomers in Human Plasma and Oral Fluid Utilizing Microextraction by Packed Sorbent and Liquid Chromatography-Tandem Mass Spectrometry
Author(s) -
Hytham M. Ahmed,
Abdel-Aziz M. Wahbi,
Hatem Elmongy,
Ahmad Amini,
Hirsh Koyi,
Eva Brandén,
Mohamed AbdelRehim
Publication year - 2021
Publication title -
international journal of analytical chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.352
H-Index - 16
eISSN - 1687-8779
pISSN - 1687-8760
DOI - 10.1155/2021/8845139
Subject(s) - chromatography , chemistry , enantiomer , tandem mass spectrometry , mass spectrometry , selected reaction monitoring , pharmacokinetics , sorbent , adsorption , organic chemistry , medicine
In the present work, the determination of omeprazole (OME) enantiomers in oral fluid and plasma samples was carried out utilizing microextraction by packed sorbent (MEPS) and liquid chromatography-tandem mass spectrometry. A chiral column with cellulose-SB phase was used for the first time for enantiomeric separation of OME with an isocratic elution system using 0.2% ammonium hydroxide in hexane-ethanol mixture (70 : 30, v/v) as the mobile phase. OME enantiomers were determined utilizing a triple quadrupole tandem mass spectrometer in positive ion mode (ESI+) monitoring mass transitions: m / z 346.3 ⟶ 198.0 for OME and m / z 369.98 ⟶ 252.0 for internal standard. The limits of detection and quantification of the present method for both enantiomers were 0.1 and 0.4 ng/mL, respectively. The method validation provided good accuracy and precision. The matrix effect factor was less than 5%, and no interfering peaks were observed. The interday precision values ranged from 2.2 to 7.5 (%RSD), and the accuracy of determinations varied from −9.9% to 8.3%. In addition, the pharmacokinetics (PK) of omeprazole enantiomers in healthy subjects after a single oral dose was investigated. (S)-Enantiomers showed higher levels than (R)-enantiomers throughout 24 h. It was found that the mean maximum concentrations of (R)- and (S)-omeprazole in plasma samples were about two times higher than in oral fluid.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom