z-logo
open-access-imgOpen Access
Functional lncRNA-miRNA-mRNA Networks in Response to Baicalein Treatment in Hepatocellular Carcinoma
Author(s) -
Xin Zhao,
Dongyang Tang,
Xiaofei Chen,
Shaoqing Chen,
Cheng Wang
Publication year - 2021
Publication title -
biomed research international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.772
H-Index - 126
eISSN - 2314-6141
pISSN - 2314-6133
DOI - 10.1155/2021/8844261
Subject(s) - baicalein , microrna , akt1 , hepatocellular carcinoma , messenger rna , biology , cancer research , human protein atlas , gene , signal transduction , microbiology and biotechnology , genetics , protein expression , pi3k/akt/mtor pathway
Baicalein has been shown to have antitumor activities in several cancer types. However, its acting mechanisms remain to be further investigated. This work is aimed at exploring the functional long noncoding RNA (lncRNA)/microRNA (miRNA)/messenger RNA (mRNA) triplets in response to baicalein in hepatocellular carcinoma (HCC) cell to understand the mechanisms of baicalein in HCC.Methods Differentially expressed lncRNAs (DELs) and miRNAs (DEMs) in HCC cell treated with baicalein were first screened using GSE95504 and GSE85511, respectively. miRNA targets for DELs were predicted and intersected with DEMs, after which the miRNA expression was validated using ENCORI and its prognostic value was assessed using Kaplan-Meier plotter. Potential miRNA targets were predicted by 3 prediction tools, after which expression level was validated at UALCAN and Human Protein Atlas. Kaplan-Meier plotter was used to evaluate the effects of these genes on overall survival and recurrence-free survival of HCC patients. Enrichment analyses for these genes were performed at DAVID.Results Here, we identified 14 overlapping DELs and 26 overlapping DEMs in the baicalein treatment group than those in the DMSO treatment group. Subsequently, by analyzing expression and clinical significance of miRNAs, hsa-miR-4443 was found as a highly potential miRNA target. Then, targets of hsa-miR-4443 were predicted and analyzed, and we found AKT1 was the most potential target for hsa-miR-4443. Hence, the lncRNAs-hsa-miR-4443-AKT1 axis that can respond to baicalein was established.Conclusion Collectively, we elucidated a role of lncRNAs-hsa-miR-4443-AKT1 pathway in response to baicalein treatment in HCC, which could help us understand the roles of baicalein in inhibiting cancer progression and may provide novel insights into the mechanisms behind HCC progression.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom