z-logo
open-access-imgOpen Access
A Computational Design Analysis of UAV’s Rotor Blade in Low-Temperature Conditions for the Defence Applications
Author(s) -
Sreenadh Chevula,
Sankeerth Chillamcharal,
Satya Prasad Maddula
Publication year - 2021
Publication title -
international journal of aerospace engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.361
H-Index - 22
eISSN - 1687-5974
pISSN - 1687-5966
DOI - 10.1155/2021/8843453
Subject(s) - drone , aerospace , rotor (electric) , blade (archaeology) , aerospace engineering , computational fluid dynamics , engineering , mechanical engineering , aeronautics , glacier , marine engineering , structural engineering , geology , genetics , biology , paleontology
This paper discusses about the critical situations faced by the Defence operations with drones in the area of Siachen Glacier in the Himalayas. The reasons for the structural failures in drone’s rotor blades and the low-performance efficiency of the drones at low-temperature conditions are highlighted. A possible solution to the above-mentioned problems has been addressed by introducing a new boundary design in the rotor blades and composite materials. The results which are shown in this paper are obtained by the computational analysis facility located at the Department of Aerospace Engineering, School of Technology, GITAM (Deemed to be University), Hyderabad. By mimicking the Siachen Glacier atmosphere conditions, the proposed rotor blade design has been analysed in CFD.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom