Electroacupuncture Attenuates Cognitive Impairment in Rat Model of Chronic Cerebral Hypoperfusion via miR-137/NOX4 Axis
Author(s) -
Xiaochen Bi,
Yanfei Feng,
Zemin Wu,
Jianqiao Fang
Publication year - 2021
Publication title -
evidence-based complementary and alternative medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.552
H-Index - 90
eISSN - 1741-4288
pISSN - 1741-427X
DOI - 10.1155/2021/8842022
Subject(s) - electroacupuncture , morris water navigation task , medicine , oxidative stress , nox4 , anesthesia , hippocampus , neuroscience , psychology , acupuncture , pathology , nadph oxidase , alternative medicine
Electroacupuncture has shown protective effects on cognitive decline. However, the underlying molecular mechanisms are not clear. The present study was conducted to determine whether the cognitive function was ameliorated in cerebral hypoperfusion rats following electroacupuncture and to investigate the role of miR-137/NOX4 axis. In this study, chronic cerebral hypoperfusion (CCH) model was established by bilateral common carotid artery occlusion. Electroacupuncture treatment attenuated brain injury in CCH model group via regulating miR-137/NOX4 axis. Furthermore, the data of neuronal apoptosis and oxidative stress were observed. Our findings indicated that (1) neuronal apoptosis and oxidative stress in CCH rats were significantly increased compared with control group; (2) the animal cognitive performance was evaluated using the Morris water maze (MWM). The results showed that electroacupuncture therapy ameliorated spatial learning and memory impairment in cerebral hypoperfusion rats; and (3) electroacupuncture therapy reduces neuronal apoptosis and oxidative stress by activating miR-137/NOX4 axis. These results suggest that electroacupuncture therapy for CCH may be mediated by miR-137/NOX4 axis. Electroacupuncture therapy may act as a potential therapeutic approach for chronic cerebral hypoperfusion.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom