z-logo
open-access-imgOpen Access
A Survey: Nonorthogonal Multiple Access with Compressed Sensing Multiuser Detection for mMTC
Author(s) -
Mehmood Alam,
Qi Zhang
Publication year - 2021
Publication title -
wireless communications and mobile computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.42
H-Index - 64
eISSN - 1530-8677
pISSN - 1530-8669
DOI - 10.1155/2021/8840519
Subject(s) - computer science , compressed sensing , multiuser detection , telecommunications , real time computing , computer security , algorithm , code division multiple access
One objective of the 5G communication system and beyond is to support massive machine type of communication (mMTC) to propel the fast growth of diverse Internet of Things use cases. The mMTC is aimed at providing connectivity to tens of billions of sensor nodes. The dramatic increase of sensor devices and massive connectivity impose critical challenges for the network to handle the enormous control signaling overhead with limited radio resources. Nonorthogonal multiple access (NOMA) is a new paradigm shift in the design of multiple user detection and multiple access. NOMA with compressive sensing-based multiuser detection is one of the promising candidates to address the challenges of mMTC. The survey article is aimed at providing an overview of the current state-of-art research work in various compressive sensing-based techniques that enable NOMA. We present characteristics of different algorithms and compare their pros and cons, thereby providing useful insights for researchers to make further contributions in NOMA using compressive sensing techniques. Nonorthogonal CDMA massive connectivity grant free medium access compressive sensing multiuser detection

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom