z-logo
open-access-imgOpen Access
Combustion Characteristics in Rotating Detonation Engines
Author(s) -
Yuhui Wang,
Wenyou Qiao,
JialingLe
Publication year - 2021
Publication title -
international journal of aerospace engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.361
H-Index - 22
eISSN - 1687-5974
pISSN - 1687-5966
DOI - 10.1155/2021/8839967
Subject(s) - detonation , deflagration to detonation transition , combustor , mechanics , combustion , deflagration , materials science , mass flow rate , volumetric flow rate , chemistry , physics , explosive material , organic chemistry
A lot of studies on rotating detonation engines have been carried out due to the higher thermal efficiency. However, the number, rotating directions, and intensities of rotating detonation waves are changeful when the flow rate, equivalence ratio, inflow conditions, and engine schemes vary. The present experimental results showed that the combustion mode of a rotating detonation engine was influenced by the combustor scheme. The annular detonation channel had an outer diameter of 100 mm and an inner diameter of 80 mm. Air and hydrogen were injected into the combustor from 60 cylindrical orifices in a diameter of 2 mm and a circular channel with a width of 2 mm, respectively. When the air mass flow rate was increased by keeping hydrogen flow rate constant, the combustion mode varied. Deflagration and diffusive combustion, multiple counterrotating detonation waves, longitudinal pulsed detonation, and a single rotating detonation wave occurred. Both longitudinal pulsed detonation and a single rotating detonation wave occurred at different times in the same operation. They could change between each other, and the evolution direction depended on the air flow rate. The operations with a single rotating detonation wave occurred at equivalence ratios lower than 0.60, which was helpful for the engine cooling and infrared stealth. The generation mechanism of longitudinal pulsed detonation is developed.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom