Incoherence Analysis of RD-AIC-Based Observation Matrix and Its Application in Power Quality Disturbance Signal
Author(s) -
Yan Liu,
Wei Tang
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/8837233
Subject(s) - restricted isometry property , matrix (chemical analysis) , random matrix , algorithm , mathematics , state transition matrix , compressed sensing , bernoulli's principle , robustness (evolution) , gaussian , symmetric matrix , computer science , eigenvalues and eigenvectors , physics , biochemistry , materials science , chemistry , quantum mechanics , gene , composite material , thermodynamics
In the theory of compressed sensing, restricted isometry property (RIP) decides the universality and reconstruction robustness of an observation matrix. At present, an observation matrix based on RD-AIC (RD-AIC-based observation matrix) can compress sparse continuous signals with a simple structure, but RIP analysis of this matrix is lack and challenging to prove. In this paper, this problem is relaxed. Instead, we demonstrate the incoherence analysis process, derive the orthogonality and nonsingularity of the matrix, propose the generalized relevance calculation steps of the matrix, and propose the hardware parameter design principles to improve the incoherence of the matrix. Moreover, compression and reconstruction experiments used in power quality disturbance signals are developed for testing the incoherence. The results show that the RD-AIC-based observation matrix has substantial incoherence under suitable hardware parameters, equivalent to the Gaussian random matrix and the Bernoulli random matrix.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom