Apelin/APJ-Manipulated CaMKK/AMPK/GSK3β Signaling Works as an Endogenous Counterinjury Mechanism in Promoting the Vitality of Random-Pattern Skin Flaps
Author(s) -
Zhiling Lou,
Chenxi Zhang,
Jiafeng Li,
Rui-Heng Chen,
Weijia Wu,
Xiaofen Hu,
Haochun Shi,
Weiyang Gao,
Qifeng Zhao
Publication year - 2021
Publication title -
oxidative medicine and cellular longevity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.494
H-Index - 93
eISSN - 1942-0900
pISSN - 1942-0994
DOI - 10.1155/2021/8836058
Subject(s) - ampk , endogeny , mechanism (biology) , vitality , chemistry , signal transduction , microbiology and biotechnology , neuroscience , pharmacology , medicine , biology , protein kinase a , biochemistry , phosphorylation , philosophy , epistemology , genetics
A random-pattern skin flap plays an important role in the field of wound repair; the mechanisms that influence the survival of random-pattern skin flaps have been extensively studied but little attention has been paid to endogenous counterinjury substances and mechanism. Previous reports reveal that the apelin-APJ axis is an endogenous counterinjury mechanism that has considerable function in protecting against infection, inflammation, oxidative stress, necrosis, and apoptosis in various organs. As an in vivo study, our study proved that the apelin/APJ axis protected the skin flap by alleviating vascular oxidative stress and the apelin/APJ axis works as an antioxidant stress factor dependent on CaMKK/AMPK/GSK3 β signaling. In addition, the apelin/APJ-manipulated CaMKK/AMPK/GSK3 β -dependent mechanism improves HUVECs' resistance to oxygen and glucose deprivation/reperfusion (OGD/R), reduces ROS production and accumulation, maintained the normal mitochondrial membrane potential, and suppresses oxidative stress in vitro. Besides, activation of the apelin/APJ axis promotes vascular migration and angiogenesis under relative hypoxia condition through CaMKK/AMPK/GSK3 β signaling. In a word, we provide new evidence that the apelin/APJ axis is an effective antioxidant and can significantly improve the vitality of random flaps, so it has potential be a promising clinical treatment.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom