z-logo
open-access-imgOpen Access
Lower-Limb-Assisting Robotic Exoskeleton Reduces Energy Consumption in Healthy Young Persons during Stair Climbing
Author(s) -
Hanseung Woo,
Kyoungchul Kong,
Dongwook Rha
Publication year - 2021
Publication title -
applied bionics and biomechanics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.397
H-Index - 23
eISSN - 1754-2103
pISSN - 1176-2322
DOI - 10.1155/2021/8833461
Subject(s) - stair climbing , stairs , exoskeleton , climbing , climb , energy cost , powered exoskeleton , physical medicine and rehabilitation , physical therapy , heart rate , simulation , medicine , computer science , engineering , architectural engineering , civil engineering , structural engineering , blood pressure , aerospace engineering
Many robotic exoskeletons for lower limb assistance aid walking by reducing energy costs. However, investigations examining stair-climbing assistance have remained limited, generally evaluating reduced activation of related muscles. This study sought to investigate how climbing assistance by a robotic exoskeleton affects energy consumption. Ten healthy young participants wearing a robotic exoskeleton that assists flexion and extension of hip and knee joints walked up nine flights of stairs twice at a self-selected speed with and without stair-climbing assistance. Metabolic cost was assessed by measuring oxygen consumption, heart rate, and the time to climb each flight of stairs. Net oxygen cost (NOC) and total heart beats (THB) were used as measures of metabolic cost, accounting for different climbing speeds. Stair-climbing assistance reduced NOC and THB by 9.3% ( P < 0.001) and 6.9% ( P = 0.003), respectively, without affecting climbing speed. Despite lack of individual optimization, assistive joint torque applied to the hip and knee joints reduced metabolic cost and cardiovascular burden of stair climbing in healthy young males. These results may be used to improve methods for stair ascent assistance.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom