z-logo
open-access-imgOpen Access
Experimental Research on Vibration Reduction of Cantilever Structure in High-Temperature Environments
Author(s) -
Di Jia,
Fuhao Peng,
Tao Zhou,
Xueren Wang,
Qingliang Lu,
Yiwan Wu
Publication year - 2021
Publication title -
shock and vibration
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.418
H-Index - 45
eISSN - 1875-9203
pISSN - 1070-9622
DOI - 10.1155/2021/8833460
Subject(s) - cantilever , vibration , dissipation , materials science , core (optical fiber) , displacement (psychology) , structural engineering , reduction (mathematics) , composite material , thermal , joint (building) , damping ratio , acoustics , engineering , physics , thermodynamics , psychology , geometry , mathematics , psychotherapist
To reduce the vibration of a cantilever steel plate in high-temperature environments (25°C–500°C), a new composite structure with entangled metallic wire material (EMWM) core was proposed. The damping performance of the EMWM under different temperatures was investigated. The results show that when the temperature does not exceed 260°C, the damping property of the EMWM is not affected by temperature. When the temperature exceeds 260°C, the damping property of the EMWM decreases with the increase of temperature. A thermal-vibration joint test system was set up to verify the energy dissipation mechanism of the composite structure with EMWM core and to research the effect of vibration reduction under different temperatures. The displacement deviation between the baseplate (steel plate) and constraining plate was sufficient to cause frictional energy dissipation of the EMWM core. The thermal-vibration joint test results indicated that the EMWM core had a positive impact on the damping properties of the cantilever structure. Adding EMWM core and constraining plate can significantly increase the damping ratio and reduces the vibration of the cantilever structures under different temperatures. This research is helpful to control the structural vibrations of cantilever structures in high-temperature environments.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom