z-logo
open-access-imgOpen Access
Visual‐Electrotactile Stimulation Feedback to Improve Immersive Brain‐Computer Interface Based on Hand Motor Imagery
Author(s) -
David Achanccaray,
ShinIchi Izumi,
Mitsuhiro Hayashibe
Publication year - 2021
Publication title -
computational intelligence and neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.605
H-Index - 52
eISSN - 1687-5273
pISSN - 1687-5265
DOI - 10.1155/2021/8832686
Subject(s) - brain–computer interface , rehabilitation , visual feedback , physical medicine and rehabilitation , visualization , motor imagery , stroke (engine) , neuroplasticity , computer science , psychology , artificial intelligence , neuroscience , electroencephalography , medicine , mechanical engineering , engineering
In the aging society, the number of people suffering from vascular disorders is rapidly increasing and has become a social problem. The death rate due to stroke, which is the second leading cause of global mortality, has increased by 40% in the last two decades. Stroke can also cause paralysis. Of late, brain-computer interfaces (BCIs) have been garnering attention in the rehabilitation field as assistive technology. A BCI for the motor rehabilitation of patients with paralysis promotes neural plasticity, when subjects perform motor imagery (MI). Feedback, such as visual and proprioceptive, influences brain rhythm modulation to contribute to MI learning and motor function restoration. Also, virtual reality (VR) can provide powerful graphical options to enhance feedback visualization. This work aimed to improve immersive VR-BCI based on hand MI, using visual-electrotactile stimulation feedback instead of visual feedback. The MI tasks include grasping, flexion/extension, and their random combination. Moreover, the subjects answered a system perception questionnaire after the experiments. The proposed system was evaluated with twenty able-bodied subjects. Visual-electrotactile feedback improved the mean classification accuracy for the grasping (93.00%  ±  3.50%) and flexion/extension (95.00%  ±  5.27%) MI tasks. Additionally, the subjects achieved an acceptable mean classification accuracy (maximum of 86.5%  ±  5.80%) for the random MI task, which required more concentration. The proprioceptive feedback maintained lower mean power spectral density in all channels and higher attention levels than those of visual feedback during the test trials for the grasping and flexion/extension MI tasks. Also, this feedback generated greater relative power in the μ -band for the premotor cortex, which indicated better MI preparation. Thus, electrotactile stimulation along with visual feedback enhanced the immersive VR-BCI classification accuracy by 5.5% and 4.5% for the grasping and flexion/extension MI tasks, respectively, retained the subject’s attention, and eased MI better than visual feedback alone.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom