z-logo
open-access-imgOpen Access
An Intelligent Offloading System Based on Multiagent Reinforcement Learning
Author(s) -
Yu Weng,
Haozhen Chu,
Zhaoyi Shi
Publication year - 2021
Publication title -
security and communication networks
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.446
H-Index - 43
eISSN - 1939-0114
pISSN - 1939-0122
DOI - 10.1155/2021/8830879
Subject(s) - computer science , reinforcement learning , quality of experience , distributed computing , edge computing , scheduling (production processes) , node (physics) , intelligent agent , computer network , base station , mobile edge computing , enhanced data rates for gsm evolution , quality of service , artificial intelligence , server , operations management , structural engineering , engineering , economics
Intelligent vehicles have provided a variety of services; there is still a great challenge to execute some computing-intensive applications. Edge computing can provide plenty of computing resources for intelligent vehicles, because it offloads complex services from the base station (BS) to the edge computing nodes. Before the selection of the computing node for services, it is necessary to clarify the resource requirement of vehicles, the user mobility, and the situation of the mobile core network; they will affect the users’ quality of experience (QoE). To maximize the QoE, we use multiagent reinforcement learning to build an intelligent offloading system; we divide this goal into two suboptimization problems; they include global node scheduling and independent exploration of agents. We apply the improved Kuhn–Munkres (KM) algorithm to node scheduling and make full use of existing edge computing nodes; meanwhile, we guide intelligent vehicles to the potential areas of idle computing nodes; it can encourage their autonomous exploration. Finally, we make some performance evaluations to illustrate the effectiveness of our constructed system on the simulated dataset.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom