Transfer Learning to Detect COVID-19 Automatically from X-Ray Images Using Convolutional Neural Networks
Author(s) -
Mundher Mohammed Taresh,
Ningbo Zhu,
Talal Ahmed Ali Ali,
Asaad Shakir Hameed,
Modhi Lafta Mutar
Publication year - 2021
Publication title -
international journal of biomedical imaging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.626
H-Index - 41
eISSN - 1687-4196
pISSN - 1687-4188
DOI - 10.1155/2021/8828404
Subject(s) - convolutional neural network , covid-19 , transfer of learning , artificial intelligence , computer science , deep learning , identification (biology) , pattern recognition (psychology) , pneumonia , machine learning , medicine , disease , pathology , infectious disease (medical specialty) , botany , outbreak , biology
The novel coronavirus disease 2019 (COVID-19) is a contagious disease that has caused thousands of deaths and infected millions worldwide. Thus, various technologies that allow for the fast detection of COVID-19 infections with high accuracy can offer healthcare professionals much-needed help. This study is aimed at evaluating the effectiveness of the state-of-the-art pretrained Convolutional Neural Networks (CNNs) on the automatic diagnosis of COVID-19 from chest X-rays (CXRs). The dataset used in the experiments consists of 1200 CXR images from individuals with COVID-19, 1345 CXR images from individuals with viral pneumonia, and 1341 CXR images from healthy individuals. In this paper, the effectiveness of artificial intelligence (AI) in the rapid and precise identification of COVID-19 from CXR images has been explored based on different pretrained deep learning algorithms and fine-tuned to maximise detection accuracy to identify the best algorithms. The results showed that deep learning with X-ray imaging is useful in collecting critical biological markers associated with COVID-19 infections. VGG16 and MobileNet obtained the highest accuracy of 98.28%. However, VGG16 outperformed all other models in COVID-19 detection with an accuracy, F1 score, precision, specificity, and sensitivity of 98.72%, 97.59%, 96.43%, 98.70%, and 98.78%, respectively. The outstanding performance of these pretrained models can significantly improve the speed and accuracy of COVID-19 diagnosis. However, a larger dataset of COVID-19 X-ray images is required for a more accurate and reliable identification of COVID-19 infections when using deep transfer learning. This would be extremely beneficial in this pandemic when the disease burden and the need for preventive measures are in conflict with the currently available resources.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom