Dynamics Modeling and Simulation of a Net Closing Mechanism for Tether-Net Capture
Author(s) -
Jiyue Si,
Zhaojun Pang,
Zhonghua Du,
Jie Fu
Publication year - 2021
Publication title -
international journal of aerospace engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.361
H-Index - 22
eISSN - 1687-5974
pISSN - 1687-5966
DOI - 10.1155/2021/8827141
Subject(s) - thread (computing) , closing (real estate) , computer science , structural engineering , engineering , simulation , mechanical engineering , political science , law
Tether-net is a promising active debris removal technique, and a closing mechanism can ensure the reliable wrapping of space debris by using tether-net. This study focuses on the dynamics model of the split closing mechanism and the sliding joint between thread and ring. First, a new kind of closing mechanism is proposed, which drives the closing thread to close the net mouth through the split masses, and the mass-spring-damper method is used to model tether-net. Thereafter, for the first time, the model of thread-ring sliding joint is proposed based on the mass-spring-damper method, which can be used to simulate the closing process of tether-net. Finally, one-edge closure experiment of the net is carried out and the experimental results are compared with the simulation results, and the closing process of the tether-net is simulated by using the thread-ring sliding joint. Results reveal that the thread-ring sliding joint can be used to simulate the relative slip between the thread and the ring, and the tether-net can wrap the target reliably in a short time by using the split closing system. The split closing mechanism can make it possible for the tether-net to close successfully, whether it starts to work before or after the net contacts with the target.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom