z-logo
open-access-imgOpen Access
Bounds of Degree-Based Molecular Descriptors for Generalized F -sum Graphs
Author(s) -
Jia Liu,
Sana Akram,
Muhammad Javaid,
Abdul Raheem,
Roslan Hasni
Publication year - 2021
Publication title -
discrete dynamics in nature and society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.264
H-Index - 39
eISSN - 1607-887X
pISSN - 1026-0226
DOI - 10.1155/2021/8821020
Subject(s) - mathematics , graph , combinatorics , degree (music) , discrete mathematics , physics , acoustics
A molecular descriptor is a mathematical measure that associates a molecular graph with some real numbers and predicts the various biological, chemical, and structural properties of the underlying molecular graph. Wiener (1947) and Trinjastic and Gutman (1972) used molecular descriptors to find the boiling point of paraffin and total π -electron energy of the molecules, respectively. For molecular graphs, the general sum-connectivity and general Randić are well-studied fundamental topological indices (TIs) which are considered as degree-based molecular descriptors. In this paper, we obtain the bounds of the aforesaid TIs for the generalized F -sum graphs. The foresaid TIs are also obtained for some particular classes of the generalized F -sum graphs as the consequences of the obtained results. At the end, 3   D -graphical presentations are also included to illustrate the results for better understanding.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom