z-logo
open-access-imgOpen Access
Associating Multivariate Traits with Genetic Variants Using Collapsing and Kernel Methods with Pedigree- or Population-Based Studies
Author(s) -
LiChu Chien
Publication year - 2021
Publication title -
computational and mathematical methods in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.462
H-Index - 48
eISSN - 1748-6718
pISSN - 1748-670X
DOI - 10.1155/2021/8812282
Subject(s) - multivariate statistics , population , covariate , type i and type ii errors , multivariate analysis , biology , genetic association , trait , kernel (algebra) , quantitative trait locus , genetics , statistics , computer science , mathematics , gene , single nucleotide polymorphism , genotype , medicine , programming language , environmental health , combinatorics
In genetic association analysis, several relevant phenotypes or multivariate traits with different types of components are usually collected to study complex or multifactorial diseases. Over the past few years, jointly testing for association between multivariate traits and multiple genetic variants has become more popular because it can increase statistical power to identify causal genes in pedigree- or population-based studies. However, most of the existing methods mainly focus on testing genetic variants associated with multiple continuous phenotypes. In this investigation, we develop a framework for identifying the pleiotropic effects of genetic variants on multivariate traits by using collapsing and kernel methods with pedigree- or population-structured data. The proposed framework is applicable to the burden test, the kernel test, and the omnibus test for autosomes and the X chromosome. The proposed multivariate trait association methods can accommodate continuous phenotypes or binary phenotypes and further can adjust for covariates. Simulation studies show that the performance of our methods is satisfactory with respect to the empirical type I error rates and power rates in comparison with the existing methods.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom