z-logo
open-access-imgOpen Access
An Improved 3D Registration Method of Mobile Augmented Reality for Urban Built Environment
Author(s) -
Yong Wu,
Weitao Che,
Bihui Huang
Publication year - 2021
Publication title -
international journal of computer games technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.248
H-Index - 19
eISSN - 1687-7055
pISSN - 1687-7047
DOI - 10.1155/2021/8810991
Subject(s) - robustness (evolution) , augmented reality , computer science , urban environment , mobile phone , real time computing , mobile device , computer vision , artificial intelligence , human–computer interaction , geography , telecommunications , biochemistry , chemistry , environmental planning , gene , operating system
3D registration plays a pivotal role in augmented reality (AR) system. The existing methods are not suitable to be applied directly in the mobile AR system for the built environment, with the reasons of poor real-time performance and robustness. This paper proposes an improved 3D registration method of mobile AR for built environment, which is based on SURFREAK and KLT. This method increases the building efficiency of algorithm descriptors and maintains the robustness of the algorithms. To implement and evaluate the registration method, a smart phone-based mobile AR system for built environment is developed. The experimental result shows that the improved method is endowed with higher real-time performance and robustness, and the mobile AR 3D registration can realize a favorable performance and efficiency in the complex built environment. The mobile AR system could be used in building recognition and information augmentation for built environment and further to facilitate location-based games, urban heritage tourism, urban planning, and smart city.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom