Beamforming Design and Covert Performance Analysis for Full-Duplex Multiantenna System
Author(s) -
Ling Yang,
Weiwei Yang,
Liang Tang,
Jia Tu,
Xingbo Lu,
Zhengyun He
Publication year - 2021
Publication title -
complexity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.447
H-Index - 61
eISSN - 1099-0526
pISSN - 1076-2787
DOI - 10.1155/2021/8806874
Subject(s) - beamforming , computer science , covert , transmission (telecommunications) , transmitter , wireless , communication source , computer network , telecommunications , channel (broadcasting) , philosophy , linguistics
In this work, a wireless covert communication system with full-duplex (FD) multiantenna receiver is considered. In order to improve the convert performance of the wireless communication system in the FD mode, a scheme based on selection combining/zero forcing beamforming (SC/ZFB) is proposed. More specifically, a covert message receiver with a FD multiantenna uses the zero forcing beamforming method to transmit randomly varying noise power to the adversary while receiving covert information from the sender. Firstly, we derive the optimal detection threshold and the corresponding closed expression of the minimum detection error rate of the warden. Secondly, the transmission interruption probability is explored to measure the communication reliability between the sender and the receiver of the covert message. Finally, the throughput performance of the covert communication system is analyzed under random geometry. Our analysis shows that the proposed SC/ZFB scheme can achieve the positive effective convert rate while interfering with the detection of the warden as much as possible. It is worth noting that the increase of the number of antennas and the power of covert message transmission can improve the convert performance of the system.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom