z-logo
open-access-imgOpen Access
[Retracted] Optimization of Online Education and Teaching Evaluation System Based on GA‐BP Neural Network
Author(s) -
Xin Xu,
Liu Feng-hu
Publication year - 2021
Publication title -
computational intelligence and neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.605
H-Index - 52
eISSN - 1687-5273
pISSN - 1687-5265
DOI - 10.1155/2021/8785127
Subject(s) - artificial neural network , computer science , artificial intelligence , machine learning
With the popularization and application of online education in the world, how to evaluate and analyze the classroom teaching effect through scientific methods has become one of the important teaching tasks in colleges. Based on this, this paper studies the application of the GA-BP neural network algorithm. Firstly, it gives a brief overview of the current situation of online education and GA-BP neural network algorithm. Secondly, through the investigation of the online education system in many aspects, it evaluates students' online education classroom teaching quality from five aspects, and this paper proposes a more scientific online education classroom teaching quality evaluation optimization model and finally verifies the reliability of the online education teaching evaluation model through the practice in a university. The results show that the GA-BP neural network-based evaluation optimization model can effectively evaluate the online education in the process of analyzing the quality of online education classroom teaching of most professional students.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom