Clinical Evaluation of FOXO1 as a Tumor Suppressor in Prostate Cancer
Author(s) -
Ning Yang,
Jiawen Wu,
Tiancheng Zhang,
Fan Yang,
Jinyan Shao,
Chang He,
Liang Qin
Publication year - 2021
Publication title -
computational and mathematical methods in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.462
H-Index - 48
eISSN - 1748-6718
pISSN - 1748-670X
DOI - 10.1155/2021/8773423
Subject(s) - foxo1 , prostate cancer , cancer research , cancer , gene knockdown , biochemical recurrence , cell cycle , pten , medicine , oncology , carcinogenesis , cell , biology , apoptosis , prostatectomy , pi3k/akt/mtor pathway , biochemistry , protein kinase b , genetics
Objective Prostate cancer (PCa) is considered the most serious cancer in the world. Nevertheless, the accuracy of current biomarkers, such as pathological staging, Gleason's score, and serum prostate-specific antigen (PSA) levels, is limited. FOXO1 is a key downstream effector of PTEN and a tumor suppressor in PCA, which has been reported extensively. However, the clinical relevance of FOXO1 in PCa remains unclear.Methods In this study, we first detected its expression in four public databases to explore the clinical role of FOXO1. Verification of the knockdown effect of FOXO1 siRNA was performed by real-time PCR analysis. Changes in cell viability were assessed using cell counting kit-8 (CCK-8) assays. In addition, we verified the effect of FOXO1 on the PCa cell cycle using a cell cycle assay.Results Herein, we found that FOXO1 was significantly downregulated in PCa tissues and was significantly associated with Gleason's score, age, biochemical recurrence (BCR), and lymph node (LN) status, while FOXO1 expression was independent of pathological staging and preoperative PSA levels. The Kaplan-Meier survival analysis showed that PCA patients with high FOXO1 expression were less likely to develop BCR compared with patients with low FOXO1 expression. In terms of function, FOXO1 inhibition significantly promoted the proliferation and cell cycle progression of PCa cells.Conclusions In summary, our study suggests that FOXO1 may be one of the prognostic factors that describe the risk of PCa for BCR. These results suggest that FOXO1 may be a therapeutic target for PCa.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom