z-logo
open-access-imgOpen Access
Key Research Issues and Related Technologies in Crowdsourcing Data Collection
Author(s) -
Yunhui Li,
Liang Chang,
Long Li,
Xuguang Bao,
Tianlong Gu
Publication year - 2021
Publication title -
wireless communications and mobile computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.42
H-Index - 64
eISSN - 1530-8677
pISSN - 1530-8669
DOI - 10.1155/2021/8745897
Subject(s) - crowdsourcing , computer science , key (lock) , data science , data collection , world wide web , computer security , statistics , mathematics
Crowdsourcing provides a distributed method to solve the tasks that are difficult to complete using computers and require the wisdom of human beings. Due to its fast and inexpensive nature, crowdsourcing is widely used to collect metadata and data annotation in many fields, such as information retrieval, machine learning, recommendation system, and natural language processing. Crowdsourcing helps enable the collection of rich and large-scale data, which promotes the development of researches driven by data. In recent years, a large amount of effort has been spent on crowdsourcing in data collection, to address the challenges, including quality control, cost control, efficiency, and privacy protection. In this paper, we introduce the concept and workflow of crowdsourcing data collection. Furthermore, we review the key research topics and related technologies in its workflow, including task design, task-worker matching, response aggregation, incentive mechanism, and privacy protection. Then, the limitations of the existing work are discussed, and the future development directions are identified.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom