Bicyclic Graphs with the Second-Maximum and Third-Maximum Degree Resistance Distance
Author(s) -
Wenjie Ning,
Kun Wang,
Hassan Raza
Publication year - 2021
Publication title -
journal of mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.252
H-Index - 13
eISSN - 2314-4785
pISSN - 2314-4629
DOI - 10.1155/2021/8722383
Subject(s) - mathematics , degree (music) , combinatorics , discrete mathematics , acoustics , physics
Let G = V , E be a connected graph. The resistance distance between two vertices u and v in G , denoted by R G u , v , is the effective resistance between them if each edge of G is assumed to be a unit resistor. The degree resistance distance of G is defined as D R G = ∑ u , v ⊆ V G d G u + d G v R G u , v , where d G u is the degree of a vertex u in G and R G u , v is the resistance distance between u and v in G . A bicyclic graph is a connected graph G = V , E with E = V + 1 . This paper completely characterizes the graphs with the second-maximum and third-maximum degree resistance distance among all bicyclic graphs with n ≥ 6 vertices.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom