Power Allocation in Massive MIMO‐HWSN Based on the Water‐Filling Algorithm
Author(s) -
Zhe Li,
Sahil Verma,
Machao Jin
Publication year - 2021
Publication title -
wireless communications and mobile computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.42
H-Index - 64
eISSN - 1530-8677
pISSN - 1530-8669
DOI - 10.1155/2021/8719066
Subject(s) - computer science , power (physics) , mimo , algorithm , mathematical optimization , telecommunications , mathematics , channel (broadcasting) , physics , quantum mechanics
Pilot power allocation for Internet of Things (IoT) devices in massive multi-input multioutput heterogeneous wireless sensor networks (MIMO-HWSN) is studied in this paper. The interference caused by fractional pilot reusing in adjacent cells had a negative effect on the MIMO-HWSN system performance. Reasonable power allocation for users can effectively weaken the interference. Motivated by the water-filling algorithm, we proposed a suboptimal pilot transmission power method to improve the system capacity. Simulation results show that the proposed method can significantly improve the uplink capacity of the system and explain the influence of different pilot transmission power on the performance of the system, but the complexity of the system almost does not increase.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom