Exploration and Research on the Propagation Law of Seepage Risk Network in Tailings Storage Facility
Author(s) -
Zhixin Zhen,
Xuewei Ma,
Bo Ma
Publication year - 2021
Publication title -
discrete dynamics in nature and society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.264
H-Index - 39
eISSN - 1607-887X
pISSN - 1026-0226
DOI - 10.1155/2021/8704259
Subject(s) - tailings , hazard , tailings dam , identification (biology) , environmental science , mining engineering , risk analysis (engineering) , civil engineering , engineering , business , chemistry , materials science , botany , organic chemistry , metallurgy , biology
The seepage accident of a tailings pond poses a serious threat to the stability of tailings dams and the surrounding environment. To reduce the occurrence of seepage accidents, this paper studies the identification of seepage hazards, the propagation law of seepage risk, the importance of hazards, and the priority of hazard treatment. To overcome the subjectivity and omission of hazard identification, according to the complexity and dynamics of tailings seepage, this paper proposes the evidence-based identification method of three-dimensional seepage hazards (EIMTSH) to identify the hazards of the tailings seepage system and the relationship between hazards. Then, on the basis of identifying the hazards of the tailings seepage system, the propagation network of seepage risk in tailing ponds (PNSRTP) is constructed based on the complex network theory. By analyzing the characteristics of the PNSRTP, it can be found that the propagation of seepage risk is scale-free and small-world. Through the node deletion method, this paper finds that the nodes with a higher degree value can reduce the network efficiency more quickly and should be governed first. By giving priority to the treatment of hazards with higher degree, the propagation of seepage risk can be reduced more quickly and the risk management level of tailings ponds can be improved, which is helpful to realize the sustainable development of mining production.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom