z-logo
open-access-imgOpen Access
Design of English Automatic Translation System Based on Machine Intelligent Translation and Secure Internet of Things
Author(s) -
Haidong Ban,
Jing Ning
Publication year - 2021
Publication title -
mobile information systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.346
H-Index - 34
eISSN - 1875-905X
pISSN - 1574-017X
DOI - 10.1155/2021/8670739
Subject(s) - computer science , machine translation , translation (biology) , artificial intelligence , artificial neural network , the internet , semantics (computer science) , encoder , function (biology) , natural language processing , word (group theory) , programming language , world wide web , biochemistry , chemistry , evolutionary biology , biology , messenger rna , gene , operating system , linguistics , philosophy
With the rapid development of Internet technology and the development of economic globalization, international exchanges in various fields have become increasingly active, and the need for communication between languages has become increasingly clear. As an effective tool, automatic translation can perform equivalent translation between different languages while preserving the original semantics. This is very important in practice. This paper focuses on the Chinese-English machine translation model based on deep neural networks. In this paper, we use the end-to-end encoder and decoder framework to create a neural machine translation model, the machine automatically learns its function, and the data is converted into word vectors in a distributed method and can be directly through the neural network perform the mapping between the source language and the target language. Research experiments show that, by adding part of the voice information to verify the effectiveness of the model performance improvement, the performance of the translation model can be improved. With the superimposition of the number of network layers from two to four, the improvement ratios of each model are 5.90%, 6.1%, 6.0%, and 7.0%, respectively. Among them, the model with an independent recurrent neural network as the network structure has the largest improvement rate and a higher improvement rate, so the system has high availability.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom