z-logo
open-access-imgOpen Access
QoE-Oriented Cooperative Broadcast Optimization for Vehicular Video Streaming
Author(s) -
Jingyao Liu,
Guangsheng Feng,
Jiayu Sun,
Liying Zheng,
Huiqiang Wang
Publication year - 2021
Publication title -
wireless communications and mobile computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.42
H-Index - 64
eISSN - 1530-8677
pISSN - 1530-8669
DOI - 10.1155/2021/8653083
Subject(s) - computer science , computer network , service provider , quality of experience , integer programming , quality of service , service (business) , economy , algorithm , economics
The popularity of online vehicular video has caused enormous information requests in Internet of vehicles (IoV), which brings huge challenges to cellular networks. To alleviate the pressure of base station (BS), Roadside Units (RSUs) and vehicle peers are introduced to collaboratively provide broadcast services to vehicle requesters where vehicles act as both service providers and service requesters. In this paper, we propose an efficient framework leveraging scalable video coding (SVC) technique to improve quality of experience (QoE) from two perspectives: (1) maximizing the data volume received by all requesters and (2) determining buffer action based on playback fluency and average playback quality. For (1), potential providers cooperate to determine the precached video content and delivery policy with the consideration of vehicular mobility and wireless channel status. If one provider fails, other sources will complement to provide requested content delivery. Therefore, their cooperation can improve the QoE and enhance the service reliability. For (2), according to buffer occupancy status, vehicle requesters manage buffer action whether to buffer new segments or upgrade the enhancement level of unplayed segment. Furthermore, the optimization of the data volume is formulated as an integer nonlinear programming (INLP) problem, which can be converted into some linear integer programming subproblems through McCormick envelope method and Lagrange relaxation. Numerical simulation results show that our algorithm is effective in improving total data throughput and QoE.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom