z-logo
open-access-imgOpen Access
Controlling Virus Spread Using an Intermittent Quarantine Strategy on Multiplex Networks
Author(s) -
Xingguo Li,
Xiaoping Luo,
Wang Yi-wu
Publication year - 2021
Publication title -
security and communication networks
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.446
H-Index - 43
eISSN - 1939-0114
pISSN - 1939-0122
DOI - 10.1155/2021/8643873
Subject(s) - computer science , quarantine , transmission (telecommunications) , information transmission , immunization , virus , computer network , virology , telecommunications , biology , ecology , genetics , antigen
Virus spreading on the Internet will negatively affect cybersecurity. An intermittent quarantine immunization strategy to control virus spreading when containing information diffusion is proposed herein. In this model, information and virus spread on different subnetworks and interact with each other. We further develop a heterogeneous mean-field approach with time delays to investigate this model and use Monte Carlo simulations to systematically investigate the spreading dynamics. For a relatively short intermittent period, the optimal information transmission probability of the virus will be significantly suppressed. However, when the intermittent period is extremely long; increasing the probability of information transmission can control the virus spreading as well as suppress the increase in the intermittent period. Finally, it is shown that the average degree of the two subnetworks does not qualitatively affect the spreading dynamics.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom