Cloud Computing Image Recognition System Assists the Construction of the Internet of Things Model of Administrative Management Event Parameters
Author(s) -
Peikun Xie,
Enchen Ma,
XU Zai-hua
Publication year - 2021
Publication title -
computational intelligence and neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.605
H-Index - 52
eISSN - 1687-5273
pISSN - 1687-5265
DOI - 10.1155/2021/8630256
Subject(s) - cloud computing , internet of things , computer science , event (particle physics) , image (mathematics) , the internet , data science , computer security , world wide web , data mining , artificial intelligence , operating system , physics , quantum mechanics
In order to successfully apply the Internet of Things and cloud computing to the administrative management of spatial structures and realize the systematization, digitization, and intelligence of administrative management, this article draws on research experience in related fields and considers the data characteristics and computing tasks of administrative management. The whole cycle of transmission, storage, postprocessing, and visualization is the main line of research, and a cloud computing-based spatial structure administrative management IoT system is constructed. First, by summarizing the application status of the Internet of Things, the general Internet of Things system is summarized into three levels, and combined with the specific work in the spatial structure administrative management, the overall framework of the spatial structure administrative management of the Internet of Things system is proposed, and the functional sublayers are carried out. Secondly, in response to the above problems, through the traditional image recognition system research and practical application investigation, in order to meet the user’s requirements for the computing efficiency and recognition accuracy of the image recognition system, an image recognition system in the cloud computing environment is proposed. It proposes a fuzzy evaluation algorithm of health grade hierarchy analysis optimized for the index system and scoring system and a calculation method that uses time series to identify regular outliers. The optical image pixel-level fusion method and the infrared and visible image fusion method based on complementary information are proposed, and the image fusion software is developed. Finally, in order to enable the application layer to use cluster resources to efficiently and intelligently process massive monitoring data containing redundancy, heterogeneity, anomalies, and many other defects, according to the calculation process of each specific task of data preprocessing and postprocessing in the application layer, demonstrations are made one by one. After analysis, it is concluded that vertical storage of data blocks according to different sensor channels is the optimal strategy.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom