z-logo
open-access-imgOpen Access
Protein Subcellular Localization Based on Evolutionary Information and Segmented Distribution
Author(s) -
Danyu Jin,
Ping Zhu
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/8629776
Subject(s) - classifier (uml) , artificial intelligence , pattern recognition (psychology) , support vector machine , subcellular localization , computer science , protein sequencing , feature extraction , biology , peptide sequence , cytoplasm , gene , genetics
The prediction of protein subcellular localization not only is important for the study of protein structure and function but also can facilitate the design and development of new drugs. In recent years, feature extraction methods based on protein evolution information have attracted much attention and made good progress. Based on the protein position-specific score matrix (PSSM) obtained by PSI-BLAST, PSSM-GSD method is proposed according to the data distribution characteristics. In order to reflect the protein sequence information as much as possible, AAO method, PSSM-AAO method, and PSSM-GSD method are fused together. Then, conditional entropy-based classifier chain algorithm and support vector machine are used to locate multilabel proteins. Finally, we test Gpos-mPLoc and Gneg-mPLoc datasets, considering the severe imbalance of data, and select SMOTE algorithm to expand a few sample; the experiment shows that the AAO + PSSM ∗ method in the paper achieved 83.1% and 86.8% overall accuracy, respectively. After experimental comparison of different methods, AAO + PSSM ∗ has good performance and can effectively predict protein subcellular location.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom