Research and Implementation of Fast-LPRNet Algorithm for License Plate Recognition
Author(s) -
Zhichao Wang,
Yu Jiang,
Jiaxin Liu,
Siyu Gong,
Jian Yao,
Feng Jiang
Publication year - 2021
Publication title -
journal of electrical and computer engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.318
H-Index - 25
eISSN - 2090-0155
pISSN - 2090-0147
DOI - 10.1155/2021/8592216
Subject(s) - license , robustness (evolution) , computer science , artificial intelligence , scalability , convolutional neural network , algorithm , field programmable gate array , generalization , pattern recognition (psychology) , computer hardware , database , mathematics , mathematical analysis , biochemistry , chemistry , gene , operating system
The license plate recognition is an important part of the intelligent traffic management system, and the application of deep learning to the license plate recognition system can effectively improve the speed and accuracy of recognition. Aiming at the problems of traditional license plate recognition algorithms such as the low accuracy, slow speed, and the recognition rate being easily affected by the environment, a Convolutional Neural Network- (CNN-) based license plate recognition algorithm-Fast-LPRNet is proposed. This algorithm uses the nonsegment recognition method, removes the fully connected layer, and reduces the number of parameters. The algorithm—which has strong generalization ability, scalability, and robustness—performs license plate recognition on the FPGA hardware. Increaseing the depth of network on the basis of the Fast-LPRNet structure, the dataset of Chinese City Parking Dataset (CCPD) can be recognized with an accuracy beyond 90%. The experimental results show that the license plate recognition algorithm has high recognition accuracy, strong generalization ability, and good robustness.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom