Detection and Analysis of Perfusion Pressure through Measuring Oxygen Saturation and Requirement of Dural Incision Decompression after Laminectomy
Author(s) -
Jamal Alshorman,
Yulong Wang,
Guixiong Huang,
Tracy Boakye Serebour,
Xiaodong Guo
Publication year - 2021
Publication title -
computational intelligence and neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.605
H-Index - 52
eISSN - 1687-5273
pISSN - 1687-5265
DOI - 10.1155/2021/8560668
Subject(s) - laminectomy , medicine , decompression , spinal cord injury , anesthesia , perfusion , oxygen saturation , spinal cord , surgery , blood flow , oxygen , chemistry , organic chemistry , psychiatry
Background. Traumatic spinal cord injury (SCI) can continue and transform long after the time of initial injury. Preventing secondary injury after SCI is one of the most significant challenges, and early intervention to return the blood flow at the injury site can minimize the likelihood of secondary injury. Objective. The purpose of this study is to investigate whether laminectomy can achieve the spinal cord blood flow by measuring the spinal blood oxygen saturation intraoperatively without the presence of light. Methods. Between June and August 2021, eight patients were admitted after traumatic spinal cord injury for surgical treatment. We explored the effectiveness of laminectomy and whether the patients required further procedures or not. We used a brain oxygen saturation monitor at the spine injury site under dark conditions. Results. Eight cervical trauma patients, six males and two females, underwent laminectomy decompression. Three patients’ ASIA grade improved by one level, and one patient showed slight motor-sensory improvement. Oxygen saturation was in the normal range. Conclusion. Performing bony decompression can show good results. Therefore, finding an examination method to confirm the improvement of blood perfusion by measuring oxygen saturation at the injury site after laminectomy is essential to avoid other complications.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom