z-logo
open-access-imgOpen Access
Low‐Cost and Long‐Range Node‐Assisted WiFi Backscatter Communication for 5G‐Enabled IoT Networks
Author(s) -
Zhimin Wang,
Li Feng,
Shumin Yao,
Kan Xie,
Yuqiang Chen
Publication year - 2021
Publication title -
wireless communications and mobile computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.42
H-Index - 64
eISSN - 1530-8677
pISSN - 1530-8669
DOI - 10.1155/2021/8540457
Subject(s) - computer science , backscatter (email) , internet of things , range (aeronautics) , computer network , node (physics) , telecommunications , wireless , computer security , structural engineering , engineering , materials science , composite material
The fifth-generation-enabled Internet of Things (5G-enabled IoT) has been considered as a key enabler for the automation of almost all industries. In 5G-enabled IoT, resource-limited passive devices are expected to join the IoT using the WiFi backscatter communication (WiFi-BSC) technology. However, WiFi-BSC deployment is currently limited due to high equipment cost and short transmission range. To address these two drawbacks, in this paper, we propose a low-cost and long-range node-assisted WiFi backscatter communication scheme. In our scheme, a WiFi node can receive backscatter signals using two cheap regular half-duplex antennas (instead of using expensive full-duplex technique or collaborating with multiple other nodes), thereby reducing the equipment cost. Besides, WiFi nodes can help relay backscatter signals to remote 5G infrastructure, greatly extending the backscatter’s transmission range. We then develop a theoretical model to analyze the throughput of WiFi-BSC. Extensive simulations verify the effectiveness of our scheme and the accuracy of our model.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom